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A theoretical study of the reflection of focused acoustic beams from a fluid-solid interface is 
presented. The incident field is defined by a Gaussian velocity distribution along a plane 
emitter. The reflected field is described through its pressure field in a region not restricted to 
the interface. Nonspecular phenomena were exhibited at any angle of incidence by means of 
short wave asymptotic analysis. In particular, for incidence near the Rayleigh angle, a 
distortion of a part of the caustic of the reflected beam including lateral and axial 
displacements of the focal point is observed. 

PACS numbers: 43.35.Pt 

INTRODUCTION 

Experimental studies • on the reflection of a bounded 
acoustic beam incident on a plane water-metal interface 
have shown that, for incidence at or near the Rayleigh angle, 
the reflected profile exhibits an unexpectedly large width, a 
silent or minimum intensity zone, and a lateral shift of the 
maximum intensity. The general features of the phenome- 
non have been described by Bertoni and Tamir 2 in 1973, as 
the result of the superposition of two parts: the usual geomet- 
ric reflected beam and the acoustic field generated by rera- 
diation of the leaky Rayleigh wave. Numerical calculation 3 
of the reflected beam profiles yield similar results and an 
extension of the theory has been proposed by Rousseau and 
Gatignol. 4 

The interest in use of ultrasonic focused beams for NDE 

applications, particularly in the case of the reflection acous- 
tic microscope, has led to many recent studies on the reflec- 
tion of focused beams. In 1985, Bertoni et al? studied the 
reflection of convergent beams on a liquid-solid interface at 
the Rayleigh angle incidence using the hypothesis of a well- 
collimated beam. They obtained the position of the focal 
point of the reflected beam and predicted both lateral and 
axial displacements, using an approximation for the reflect- 
ed acoustic field. In 1986, Nagy et alfi verified the axial dis- 
placement by means of schlieren photography. The devel- 
oped model s has a number of advantages (simplicity and 
amenability to analytical solution), but is difficult to apply 
in its present form to beams having more pronounced con- 
vergence, and at angles of incidence other than the Rayleigh 
angle. Further, in the model there is no notion of the caustic 
of the incident or reflected beams; the only information 
about the modified reflected field is the displacement of the 
focal point. 

In this paper, we extend the previous theories 2's to in- 
clude the following. 

(1) The incident beam is now defined by its normal 
velocity distribution along a plane emitter placed in the fluid 
and introduce the notion of the caustic of the acoustic beam. 

(2) Initially, an asymptotic evaluation of the reflected 
pressure field was obtained for any angle of incidence, in 
particular for the Rayleigh angle, using short wave assump- 
tions by means of a steepest descent procedure. 7's We ob- 
served that for incidence near the Rayleigh angle where the 
phase of the reflection coefficient varies abruptly, contrary 
to the case of bounded beams, n this asymptotic method is not 
applicable. The physical significance of this observation is 
the following: the presence of the Rayleigh pole of the reflec- 
tion coefficient (singularity in the complex plane relative to 
a generalized Rayleigh wave), does not affect the reflected 
beam; i.e., the reradiation of a leaky Rayleigh wave in the 
fluid medium (which is the cause of nonspecular reflection 
of a parallel beam) is very low. 

(3) Finally, an asymptotic evaluation of the reflected 
field was obtained by means of the stationary phase meth- 
od TM applied to the Fourier representations. This allows one 
to explore the reflected pressure in a region that is not limited 
to the interface alone, and thus obtain a spatial representa- 
tion of the reflected beam. 

(4) A distortion of the caustic of the reflected bean• was 
observed in the neighborhood of the Rayleigh angle of inci- 
dence, including lateral and axial displacements of the focal 
point of the beam. At the Rayleigh incidence, the lateral 
displacement is maximum. At this particular angle, the axial 
displacement is negligible in comparison to the length of the 
focal spot and thus experimentally not detectable. More- 
over, other nonspecular phenomena are predicted for inci- 
dence near the Rayleigh angle: spreading of the reflected 
beam, asymmetric variation of the acoustic pressure around 
the axis, and curvature of the acoustic axis. 

(5) The nonspecular reflection of a focused beam due to 
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the generation of the Rayleigh wave occurs for any angle of 
incidence. For incidence near the Rayleigh angle, the whole 
acoustic axis and a part of the caustic are distorted, including 
axial and lateral displacements of the focal point; for another 
incidence, a different part of the reflected beam would be 
modified. 

I. THE GAUSSIAN FOCUSED MODEL 

A. Definition of the problem 

In order to describe the nonspecular reflection of fo- 
cused acoustic beams incident on plane fluid-solid inter- 
faces, we assume that the incident field is given by a Gaus- 
sian distribution of the normal velocity along the plane of the 
emitter and that the characteristic width of the beam is large 
compared to the emission wavelength (short wave hypothe- 
sis). Thus, the pressure field can be described by means of a 
Fourier representation; the asymptotic evaluation of the 
Fourier integral is obtained about the Rayleigh singularity. 

Let us consider the configuration of Fig. 1. The half- 
space z < 0 is filled with a fluid with mass densityp and sound 
velocity c. The half-space z > 0 is the elastic solid region with 
mass density p., and with Cst and Csr as longitudinal and 
shear wave velocities, respectively. The emitting plane is de- 
fined by z i = 0 in the fluid region. The Gaussian normal 
velocity distribution along the emitter plane is given by 

V, ( Xi,O ) = Voe - tx/a)•e i, si. o,,<d/,) e _ ,.•,, ( 1 ) 
where V o is the central magnitude of V,, "a" is the charac- 
teristic width of the Gaussian beam, k is the wave number in 
the fluid given by k = co/c, with co the angular frequency of 
the emitter, and 8 0 is the half-angle of convergent beam. 

FLUIU 

SOLIB 

FIG. 1. Configuration of the problem and coordinates definition. (x•,z,.) is 
the coordinate system linked to the emitter; (x,z) is the coordinate system 
linked to the interface, where the continuity conditions are written; (,4,B,.) 
is the coordinate system linked to the reflected beam; (x',z') is the coordi- 
nate system where the reflected field is expressed (calculus system ); and 0j 
is the angle of incidence. 

B. Incident field 

The pressure of the incident field in the coordinate sys- 
tem (xi,zi) is given by plane-wave superposition in the form 
of a Fourier integral: 

p•.•(.•i,•)_ pcVox/•- /:: 2/• sin 0o 

X e i•kø)2';•') d•,, 

exp[ (Jc 2•./4 sin • 0 o) ] 
k•, 

with 

2 

where nondimensional parameters) 

(2) 

(3) 

k•, and k•, are the wave-number components along the axes 
xi and z•, respectively. 

The function/c•, = 1• is chosen as real positive 
when • 1 and imaginary positive when I/cx•l > 1 (ac- 
cording to propagation conditions); this function has two 
branch points at •x• = + 1. The real integration path in the 
system (x•,z•), is indicated in Fig. 2. 

Using the asymptotic method of steepest descent, the 
pressure field (2) can be evaluated as (see Refs. 9 and 10 for 
detailed equations): 

Pine ('•i ,•i ) 

= const * •(term depending on 7/,• ), n = 1 or 3, 
(4) 

where 7/,, are the saddle points of the functionf given by the 
equation f:(?'.) = 0. Equation (4) can be interpreted in 
terms of rays; the propagation around a point (•,2•) can 
be locally assimilated to a plane wave of wave number: 

[ ky,,,k lx/•-- •. 1, n=l or 3. 
In these conditions, the direction of propagation is given by 
the straight line defined by the equation: 

o(r,,): - =o. 
(5) 

/ // / ./ 
/ Im(Ez, ) c 0 

/ 
// /' / 
// / / 

FIG. 2. Real integration path for the incident pressure integral representa- 
tion, in the system (x,,z,). 
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emitter 
• i•X•/7/localization zone 4' 

? 

FIG. 3. Incident beam. Focalization zone. 

The envelop of the set of all such lines defines the caustic of 
the field, which can be found from the equations f• =f•' 
= 0. The caustic devises the physical space in two regions 
(see Fig. 3). 

(i) In the region outside the focal zone, only a single ray 
passes through each point (case of a single stationary point); 
Eq. (4) has only one term. 

(ii) Within the focal zone, three rays pass through each 
point; two of them are tangent to the "near" branch of the 
caustic, the third, to the "further" branch (case of three 
stationary points); Eq. (4) has three terms. 

C. Reflected field 

The incident field expressed in the (x,z) coordinate sys- 
tem is given by 

Pi.c(•,2) - pcVox[ka f+• exp(--[(•:x cos0t-•z sinOt)2/4sin20o])ei(ko,);(L, 2• 0o 
(6) 

with 

f(k•) = 
cos Ot -- •:z sin 0 t ) 2 

4 sin 0o 

(•-t-• tan 0t)• • + (7) 

where "d" is the distance between the emitter and the inter- 

face, and the bar indicates nondimensional parameters. 
Since the incident field is composed of plane waves, 

writing the continuity conditions in the (x,z) coordinate sys- 
tem is the same as multiplying the integrand of Eq. (6) by 
the plane-wave reflection coefficient for a fluid-solid inter- 
face. 

Thus, the pressure of the reflected field is given by 
1 

(• cos Ot - •z sin Ot ) 2/4 sin 2 0 o ] } 

P•r (•,2) 

2•/• sin 0o 
exp(- [ 

with 

(k• cos 0 t - k• sin 0• ) 2 
Z(k•) - 

4 sin •o 

+ (• + •tan Ot)•. + (• - •)•. (9) 
Here, R (•) is the plane-wave reflection coe•cient: 

2 

R(k• ) - (2k2• - n3)2 + 4k•k•s•k•sr - (P/P")n}([%s•/[<•) 
(2k 2• _ n•.)2 + 4k •kzsLk,s r + (p/p,)n•([CzS•/kx ) 

(10) 

where n• and n r denote the refraction indices of longitudi- 
nal and shear waves, respectively. 

Finally, the wave numbers in the z direction, linked to 
the fluid and the solid are 

h 
--k•, (11) 

= 44 -2 
They depend on the domain of definition of/<x•, and are 
chosen as real positive when I• I < 1,n•,nr and imaginary 
positive when I•l> l,n•,nr (for the usual case C<Csr 
< Cs• ). 

In this case, the reflection coefficient R (•) has one 
pole in the complex • plane, at • = • (there is also an- 
other pole at • = - • ). With the assumption p/p, • 1, 

I 

which is the common situation, /% may be written in the 
form: 

/%=•:a +i&•, &•,•l, (12) 

where /<• = sin 0• (0• is the Rayleigh angle) and • is 
proportional top/p•. Thus, the pole/% is near the real axis of 
the complex k• plane. 

Following a Laurent series expansion about the Ray- 
leigh pole, the reflection coefficient may be written in the 
approximated form: 

R(k•) = k• -ko k• --/% (13) 
In the absence of losses in the medium, the zero of the reflec- 

tion coefficient •o is the complex conjugate/• • of the pole/%. 
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In order to evaluate analytically the integral (3) we 
need to express the reflected field in the (x',z') coordinate 
system where Eq. (9) is written in a more convenient form: 

where 

k2 
œr --- 

4 sin 0 o 
with 

A• = 2' cos 20, + 2' sin 

d- Aikx, d- Bikz, (15) 

(16) 
•i = 2' sin 20, -- 2' cos 20, + • /cos 0,. 

In the neighborhood of the pole, the reflection coefficient 
R (•:•,) is given by the approximated expression: 

* 

R(k,,.) h,. -k,,. k•, -- •'p, ' (17) 
where - * is the complex conjugate of the pole 

In the (x',z') coordinate system the Rayleigh pole is 
given by 

•:., = sin(0, -- 0• ) + i(5•/cos O• )cos(0, -- 0• ). 
(18) 

We note that •:•, • sin (0• -- 0• ) is the real part of this pole. 
For the special case of incidence at the Rayleigh angle, 

the pole becomes purely imaginary: 

•,, = i(5•/cos O• ). (19) 
It is always possible to develop the reflection coefficient in 
phase and modulus: 

R(J:•,, ) =p(J:•,, )e "•Lø. (20) 
Figure 4(a) and (b) shows the modulus, p(•:•), and the 
phase, q2(J:• ), of the reflection coefficient, respectively, in 
the case of a water-aluminum interface. In the neighbor- 
hood of the Rayleigh pole (which is a singularity in the com- 
plex plane), the modulus of the reflection coefficient tends 
towards infinity (when /%,--./%, we have IR[-• d- oo ), 
whereas the phase is regular. In the neighborhood of the 
Rayleigh angle of incidence the modulus of the reflection 
coefficient remains regular, but the phase varies rapidly. In 
order to apply an asymptotic method it is thus necessary to 
regroup the phase with the functionf, (Ref. 10): 

)'r(k,,, ) =f• (k•,) + q(•%' ) (21) 
ka 

The function.•r, being an argument function, is not holomor- 
phic. Thus we cannot apply the steepest descent method 
since this asymptotic technique, based on the Cauchy 
theorem, is only applicable to holomorphic functions. How- 
ever, we may assume •c•, real, and by making a restriction on 
the real axis, we may evaluate the integral (14) through 
application of the asymptotic method of stationary phase. 

Incidence 

:t 
Phase of the reflection cosf. 

..... d •itic•al• • •ayle•gh angle 
incidence (de9) 

FIG. 4. (a) Modulus of the reflection coefficient. (b) Phase of the reflection 
coefficient (fluid-solid plane interface). 

II. APPLICATION OF THE METHOD OF STATIONARY 
PHASE 

A. Analytical expression of the reflected pressure field 

The principle of stationary phase asserts that, as 
ka--. d- •, the dominant terms in the asymptotic expansion 
of the integral (14) wherefr (•,) is real, arise from the im- 
mediate neighborhood of the points at which the phase 
(ka)f• (•<) is stationary. We• suppose that the coefficients 
that intervene in the functionf• (i.e., A•,B• ) are of the order 
1. Hence, the application of the method consists of calculat- 

^ ^ _ 

ing the stationary points of the function f, given byf'• (k•,) 
= O, for T%. el -- 1,+ 1[. 

Let us consider a point of the specular reflected beam of 
coordinates (2•,•); the reflected pressure corresponding to 
this point is given •by the integral (14). To the chosen point 
corresponds •a set 7% of stationary points calculated by the 
equationf• (7%) = O, i = 1 or 3. 

1. Case of a single stationary point •,o 
Here, the integral (14) may be written as: 

P•r (•(• ,z-(• ) 

_ pcVo k• •,'ø+• exp(--Tc},/4sin20o) 2t•sin 0o a•o- • p (/% ) /% 
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X e i(ka}?'(• d•.½. (22) 

If the stationary point 3•o is?tuated •near kR', the func- 
tion q '(•x' ), in the interval ] Yio -- e, Fio + ß [, must be 
taken into account. At this point, the acoustic field is modi- 
fied relative to its geometric value: 

Xexp[i(ka)(•'lO•,O + 41- •o B•)] 
+ O( l/ka). (23) 

If the stationary point •% is situated far from/•a., the 
function q '(k•. ), in the interval ] •/IO -- •' •/IO -{- E [, has a 
negligible value. Thus j5 =f, and ?qo = Y•o. At this point, 
the acoustic pressure is specular. 

I 

Z ½aae o! three stationar7points 
Here, the integral (14) is written: 

Cr'•'+' )d•.c) 
with 

exp( -- •./4 sin J(k•, ) =p(k_• ) - . 

(24) 

If all the stationary points 3• satisfy • '(• ) •ka, the 
function q '(•. ) is negligible in the neighborhood of each 
stationary point; thus, • (which are roots off;) also satisfy 
the equationS; = 0. In this case, the reflected pressure cor- 
responding to the point (•,•))s specular. 

If all the stationary points • satisfy q' (3•) • ka, the 
function •'(•.½ ) must be taken into account. 

Thus, the analytical expression of the integral (14) is 

P.r X, ) - 

exp[itka)(•:• +41 -- • Ba)] 

exp[i(ka)(•+•l-• B•)] +O(-•a ). 
(25) 

At this point, the corresponding acoustic field would be 
modified. 

We give some definitions. 
A point in the physical space is called "pure" if all the 

three stationary points involved are roots of the same func- 
tion f;. This is a point with singularity (in the s•ense of prox- 
imity between the pole and the complex root off•) of order 3; 
in this case, there are three rays at the Rayleigh angle of 
incidence. 

A point is called "ordinary" if all the three stationary 
points involved are roots of the same functionf•'. 

Let us consider the case of a point having three station- 
ary points 3•, of which only one or two are in the neighbor- 
hood of/(n., and the other(s) are situated outside this area. 

For this point, the acoustic pressure field will be modified 
relative to its geometric value. This case corresponds to a 
physical point inside the focal zone of the nonspecular re- 
fießted field. This point is defined by only two (or one) 
specular rays, and one (or two) nonspecular ray (s). This is a 
point of singularity of order 2 (or order 1 ). We call this point 
"impure" as opposed to the definition of the "pure" point. 

In the case of an impure point, the corresponding acous- 
tic pressure will be modified relative to its geometric value. 

Remark: The expressions (23) and (25) give the pres- 
sure field at any nonsingular point in the physical space. The 
solution diverges on the caustic and at the focal point, and 
we have to apply the method of Ludwig,• • as in Refs. 9 and 
10. The technique used together with the expressions of the 
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pressure field are not given here as they are analogous. 
In order to evaluate the expressio•ns (23) and (25) we 

have to calculate the stationary points •/•o as a function of•/•; 
this is discussed in the following section. 

B. Study of stationary points 

In the case of the reflection of a focused beam at a plane 
interface in the neighborhood of the Rayleigh angle of inci- 
dence, the generation of a Rayleigh wave causes a small dis- 
placement of the stationary points of the specular beam (i.e., 
a small displacement of the geometrical reflected rays). 

In a given• point, the new stationary points are roots of 
the function f'r(•x, ) =f'r(•q. ) + c• '(•x. )/ka, where it is 
supposed that 

1 • '([& )/ka4f•'(•cx. ). (26) 

For reasons reported at the end of Sec. II A, the following 
analysis is applied for points that do not change their "phys- 
ical nature." A point initially situated in the interior (con- 
versely in the exterior) of the specular focal zone, changes its 
physical nature if it is found in the exterior (conversely in the 
interior) of the nonspecular focal zone; to the considered 
point initially correspond three stationary points (converse- 
ly one single real root) and finally corresponds one single 
stationary point (conversely three real roots). Points in the 
neighborhood of the caustic are liable to change their phys- 
ical nature. 

Let us consider two points, M• and M 2, in the exterior 
and in the neighborhood of the specular reflected caustic 
[see Fig. 5(a) ]. For these points, the incidence of the beam 
is close to the Rayleigh angle. 

The rays with an incidence near the Rayleigh angle will 
be slightly modified. 

The point M• corresponds to a ray with an incidence far 

from the Rayleigh angle. This point will not change)ts phys- 
ical nature. Let us see the position of the roots off; in the 
complex plane [see Fig. 5 (b) ]. The rectangle indicates the 
influence area of •v '. 

The two complex roots situated far from this area, will 
not be displaced and thus will not become real. The point M 2 
corresponds to a ray with an incidence near the Rayleigh 
angle. This point can change its physical nature. The posi- 
tion of the roots in the complex plane is shown in Fig. 5 (c). 

In this case, the two complex roots situated near the area 
of the Rayleigh influence, can be slightly displaced and be- 
come real. This will result in a distortion of the caustic of the 

reflected beam. The caustic will be displaced to the right (see 
Fig. 9). A curvature in the acoustic axis is thus observed. 

In region I (where the point M• is situated) the gradient 
of the acoustic pressure would be lower than its geometrical 
value. In region II (where the point M 2 is situated) the gra- 
dient of the acoustic pressure would be greater than its geo- 
metrical value. Thus we observe an asymmetric variation of 
the reflected pressure field around the axis. 

Four points far from the specular caustic, the stationary 
points 7% are in the neighbo•rhood of the stationary points 
y•. Hence, we can calculate 7% from a Taylor expansion of 
functions f; (•) and qv '(• ) about 

(a) 

(b) 

(c) 

FIG. 5. (a) Points M• and M2 in the exterior of the specular reflected beam. 
(b) Point M•: location of the three roots off• in the complex plane. (c) 
Point M2: location of the three roots off'• in the complex plane. 

f•.(•',o) + - 
= qv'(r) + - r,o). 

Then 

and thus 

•'(y•)/ka 

f•' (Ym) + • "(Yio )/ka 

where e' is a small parameter [hypothesis (26) ]. 

C. Deformation of the reflected field 

In the preceding section we deduced an asymmetric 
variation of the reflected pressure around the caustic of the 
beam (displacement of the reflected caustic to the right--see 
Fig. 9). Our aim now is to reconstruct, point by point, the 
new caustic taking into account the nonspecular phenome- 
na, and thus determine the position of the new focal point. 

Let us consider a point (A•o,B,o) of the reflected geo- 
metric beam. This point corresponds to a set of stationary 
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points///0. If the chosen point (A/0,B•o) is situated in the 
focal zone, we have the case of three stationary points (7'1o, 
7'20, 7'30), which satisfy the equations: 

f; (7'lO) = 0: •/l•0 ..{_ •/0 •/07'10 
2 sin 0o x/1 -- •o 

f• (Y20) = 0: 7'2•0 + • • •20 
2 sin 0o •1 - •o 

__-- 0, (27a) 

0, (27b) 

(7'30) 0: 7'30 = __ = 0. (27c) 
2 sin 0o x/• -- •3o 

A A 

We calculate the coordinates of a new point (A/0,B/0) to 
which corresp•ond the sa•me station•ary points 7'•o, 7'2o, 7'30 
(we suppose 7'm = Ym, 7'20 = 7'2o, 7'3o = 7'3o). We call this 
point the "image" of the point (A/0,B•o ) in the nonspecular 
beam. 

By expanding ½ '(•:x, ) about the stationary points 7'/0, 
situated in the neighborhood of •R, and supposed equiv- 
alents, the three stationary points satisfy the equations: 

?• (7'Bo) =0: ('2--•nsiln 0o -3- N) 7'1o 

?r' (7'-'0) = 0: 

A 

• Bio7'm 
+ A/0 + M __ -- 0, (28a) 

X/1 - •o 

• B/0 7'20 
+ A/0 + M __ - 0, (28b) 

• B/0 73o 
+A• +M-- 0, (28c) 

7'3o) = 0: 

'(7'/0 ) - 7'•½ "(7'• ) 
ka 

where 

and 

N= I • ½"(7'/0) n •=• ka ' 

n denoted the number of stationary points near •:R,; the 
functions ½' and cp" are, respectively, the first and second 
derivatives of the phase c,o of the reflection coefficient. By 
subtracting Eqs. (27a) -- (28a), (27b) -- (28b), 
(27c) -- (28c) we obtain a system of three equations that 

can be used to determine A/0 and B/O: 

N7',o + (A/0 -- •o ) + M = (B/0 - •o ) 

Ny2o + (A•o - •/0 ) + M = (B/0 -- • ) 

7'1o 

(29a) 

7'20 

(29b) 

N7'3o + (A/0 --A•o) +M= (B/0 --•/0) 7'3O 

x• -- •o 
(29c) 

From Eqs. (29a) and (29b) we obtain: 

• -- N(7'lO -- 7'20) B• = B/0 + 

• 7'lO/Xfi- •o - 7'_.o/x/• - •o ' 
Aio = •'/0 -- M - N7'•o + N(7'l o -- 7'20)Y•0 

(30) 

(31) 

Remark.' The determinant of these three equations is 
zero, and the third equation is a linear combination of other 
two. 

Equations (30) and (31 ) give the nonspecular image of 
a point of the geometrical beam, if the initial point is not 
situated on the specular caustic (i.e., the initial point must 
correspond to three distinct stationary points). 

If the initial point is a point of the specular caustic, 
which corresponds to the set of stationary points: 7'Bo = 7'•o, 
7'30, this set satisfies the equationsf• =f7 = 0 and thus we 
obtain 

•2/3 - 2/3 . to +B/0 = (1/2sin 00) 2/3 (32) 

We calculate the coordinates of an image point of the non- 
specular reflected caustic that corresponds to the same set of 
stationary points 7'm = 7'2• 7'•o; these stationary points also 
satisfy the equations)'5 =f7 = 0. 

Thus 

1 " .½' ( 7'/0 ) -- 7'/0 (/9 "( 7'/0 ) 2/3 B •0/3 

-2 sin 0---• + •-,'•", ka ' (33) 

The coordinates of the image point are 

A,o = A /0 -- M-- N7?•o , 
x (34) 
B/0 =•/0 + N(1 -- •)•/2. 

From the system f; =f;' =f;"= O, we deduce three sta- 
tionary points equal to zero corresponding to the specular 
focal point. Thus, the coordinates of the geometrical focal 
point are 

•/0 =0, •/0=l/2sinO o. (35) 
From the system.•; =.•7 =.•7 '= 0, we also denote three 
stationary points equal to zero, corresponding to the new 
focal point. Thus, the coordinates of the new (nonspecular) 
focal point are 

.4•o _ ½'(0•) B•o -- 1 4- q "(0) (36) 
ka 2 sin 0 o ka 

By comparing the expressions (35) and (36), we deduce the 
lateral L and axial A displacements of the focal point: 

L - c,v ' (0) ½'(k;)cos O; -- -- (37) 
ka ka ' 
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q• "(0) _ q• "(•z ) cøs•Oz -- q•' (ks) sin O• 
ka ka ' 

(38) 

where •v '(0) and cp "(0) are the first and second derivatives 
of the phase of the reflection coefficient, in the system 
(x',z'); where •v '(•:/) and •v "(•%) are the first and second 
derivatives of the phase of the reflection coefficient calculat- 
ed at the point •s = sin 0/, in the (x,z) coordinate system. 

The first derivative is negative, thus the lateral displac- 
ment always remains positive. For the Rayleigh angle inci- 
dence, for which •/= Tc R , L becomes maximum. There is no 
axial displacement for an angle of incidence noted 0,o, 
which is defined by the equation: 

• "(sin 0, o )cos 2 0, o - • '(sin 0•o )sin 0•o = 0. (39) 

In practice, the value of 0to is near 
For incidence 0t < 0•o, A is negative with a minimum 

for an incidence denoted 0m•,; for incidence 0• > 0•o, A is 
positive with a maximum for an incidence denoted 0ma x . The 
results for this particular case of our study conform to those 
reported by Bertoni et 

In Fig. 6(a) and (b), L and A are represented qualita- 
tively as a function of the incidence. In Fig. 7 (a) and (b), we 
represent L and A quantitatively for an emitter at 5 MHz. 
These theoretical results conform to our experimental data 
that is presented in a companion paper. 

Remark.' For an ordinary point, image and initial points 
are superimposed. We can find both the image of points of 
the caustic and of points in the interior of this caustic. The 

Lateraldisplacement (L) / 

(a) 01• incidence 

Omin OIo 

OR 0max incidence 
(b) 

FIG. 6. (a) Qualitative lateral displacement of the focal point. (b) Qualita- 
tive axial displacement of the focal point. 

E 

(a) 

Rayleigh angle 

•-second critical 

• •-- degrees 
•.AxSal •teplacement fr-SHHz 

E 

Rayleigh angle 

' i., 
(b) 

degrees 

FIG. 7. (a) Lateral displacement of the focal point (emitter at 5 MHz). (b) 
Axial displacement of the focal point (emitter at 5 MHz). 

part of the caustic situated far from the focal point (ordinary 
points) will not be distorted; for this region the image corre- 
sponds to the initial point. 

Figure • shows the regions of pure and impure points in 
the focal zone of the nonspecular reflected beam. In the case 
of an initial point situated in the exterior of the focal zone 
(this point corresponds to a single stationary point), there is 
only one equation to calculate the coordinates of the image. 
Thus, we find a direction on which the image is situated. 

During our analysis, we have already seen that in the 
nei_ghborhood of Tc R, the phase of the reflection coefficient, 
q(k•, ), varies abruptly and thus q• ' (•c•,) must be taken into 
account. In the exterior of this neighborhood, the phase re- 
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zone of ssddle-points •0 (pure points) 

zone of •mpure po•nte (mixed seddle-po[nts •i0 end •) 

zone of •eddla-polnts •i0 (ord•ner• points) 

•OLIõ 

FIG. 9. Qualitative representation of the distortion of the caustic of the 
reflected beam: .... geometrical caustic; distorted caustic. 

FIG. 8. Nonspecular reflected beam: regions of pure, impure, and ordinary 
points. 

mains constant and thus (p ' (•:•.) is negligible. 
Now we will consider two cases. 

(a) Case of an incidence near the Rayleigh angle: 
10• - 0RI• •. Here, •cR, = sin (0• - 0a ) tends to zero, and 
is zero for incidence at the Rayleigh angle. 

We distinguish two possibilities. 
(al) If at least one stationary point y• remains in the 

neighborhood of •:n., among the points of the physical space 
concerned here are the following. 

(i) A region around and on the focal point (for which 
the three stationary points are equal to zero): lateral and 
axial displacements. 

(ii) A region around and on the part of the caustic situ- 
ated near the focal point (where the three stationary points 
are near k•, which is near zero): distortion of the caustic, 
spreading of the reflected beam, asymmetric variation of the 
acoustic pressure around the reflected caustic. 

(iii) A region around and on the entire acoustic axis 
(for which one stationary point is always equal to zero): 
curvature of the acoustic axis. In Fig. 9, the regions of the 
geometrical caustic (a broken line) for the case (al) are 
illustrated. For incidence near the Rayleigh angle, these re- 
gions of the reflected beam would be modified (nonspecular 
reflection). 

(a2) If we consider a set of stationary points situated far 
from •:•., I Y• -- ke' I • e, in spite of an incidence in the neigh- 
borhood of the Rayleigh angle, this set of stationary points 
corresponds to a point of the specular beam. 

(b) In the case of an incidence far from the Rayleigh 
angie, 10t -- 0a ]•e, we can distinguish two possibilities. 

(bl) If the stationary points are situated far from 
1• -- kn' I• e, they correspond to points of the specular re- 
flected beam. 

(b2) If at least one stationary point • remains in the 
neighborhood of•:e., I•/• -- •:•. I•e, in spite of an incidence 
far from the Rayleigh angle, there are points in the physical 
space for which the reflected beam would be modified with 
respect to values defined by geometrical acoustics. 

A part of the caustic situated far from the focal point 

will be modified. We note that the focal point (three station- 
ary points equal to zero) is not of concern here because of the 
general assumption (b) of an incidence far from the Ray- 
leigh angle (i.e., •:n. is far from zero). 

III. CONCLUSIONS 

In this paper we have studied the structure of the acous- 
tic field in the case of the reflection of focused Gaussian 

beams from a fluid-solid interface. Initially, the incident 
beam was modeled by plane wave decomposition using the 
Fourier integral representation. Then, the reflected beam 
was described in a coordinate system corresponding to the 
emitter. In this system, the expression of the phase function 
is simplified, so it was possible to calculate its stationary 
points analytically. The reflected pressure field was finally 
deduced by means of the asymptotic method of stationary 
phase, based on the short wave hypothesis. 

The analytical expression obtained is valid for any angle 
of incidence. A modification of the structure of the reflected 

focused beam, in relation to the provisions of the geometrical 
acoustics, was observed for any incidence. In the specific 
case of an incidence in the neighborhood or equal to the 
Rayleigh angle, nonspecular phenomena involve a part of 
the caustic of the reflected beam including the focal point, 
and the acoustic axis in its entirety. Simple expressions of the 
axial and lateral displacements of the focal point were de- 
duced, and led to a numeric quantification. The theoretical 
results obtained here are in agreement with our experimental 
data reported in a companion paper. • 

In the case of a focused reflected beam, only a part of the 
energy falls on the interface at the Rayleigh angle. The 
abrupt variation of the phase of the reflection coefficient in 
the neighborhood of the Rayleigh angle, causes a local modi- 
fication of the reflected beam. Further, for a focused beam, 

rays always fall on the interface at the Rayleigh angle even if 
the beam incidence is far from that angle. For this reason, 
there are always regions of the reflected field that are modi- 
fied (even if the beam incidence is far from the Rayleigh 
angle). However, in the case of a bounded reflected beam, • 
and in the context of geometric acoustics, all energy (except 
the small quantity of diffracted energy) falls on the interface 

1415 J. Acoust. Soc. Am., Vol. 93, No. 3, March 1993 Matikas eta/.: Reflection of a focused ultrasonic beam 1415 



with the same angle. If the incidence of the beam is equal to 
the Rayleigh angle, generation of a Rayleigh wave occurs 
following its reradiation in the fluid resulting the well- 
known nonspecular phenomena. 
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